If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+10-72=0
We add all the numbers together, and all the variables
3a^2-62=0
a = 3; b = 0; c = -62;
Δ = b2-4ac
Δ = 02-4·3·(-62)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{186}}{2*3}=\frac{0-2\sqrt{186}}{6} =-\frac{2\sqrt{186}}{6} =-\frac{\sqrt{186}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{186}}{2*3}=\frac{0+2\sqrt{186}}{6} =\frac{2\sqrt{186}}{6} =\frac{\sqrt{186}}{3} $
| 5x/6=3x-18/4 | | p/8+5=6 | | 6+5=p/8 | | 4x+x+2x+5x=360 | | 3z-1/3=9 | | (16b-4)-5(3b+3)=-7 | | (16b-4)-5(3b+3)=7 | | 6s+12=6s+48 | | -1/7b=-2/7 | | 23p+4p^2=-15 | | -3/10b=2/5 | | 3(x—3)=9 | | -1/5b=-3/5 | | 60=x^2-6x+5 | | 28=-4b | | -33=9-7x-3 | | -33=9-7x1 | | -33=9-7x6 | | -a/5=3 | | -33=9-7x-9 | | 5x−4=−19x | | -4/7y=-16 | | 6y−20=2(5y−6) | | 2x-9=3x+10 | | 5x+4x-1=17 | | 4=a-2/3 | | -4=b-1/7 | | 5/6y=23 | | x-3x÷4=5 | | 1.05x^2=2^x-100 | | Y=3x^2+7x-14 | | 0=-2.5x^2+27.5x |